长城汽车产业研究院

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 123|回复: 1

新ai模型发布:2D草图一键变成3D模型的新算法 5星

[复制链接]

497

主题

907

帖子

2654

积分

金牌会员

Rank: 6Rank: 6

积分
2654
发表于 2023-2-21 11:10:35 | 显示全部楼层 |阅读模式
CV大佬朱俊彦的新论文,让设计师们感觉危了。

事情是这样的:

量子位在微博上搬运了朱俊彦团队的新成果,一个能将2D草图一键变成3D模型的新算法,却意外引发设计圈盆友们的热烈转发讨论。
简单来说,这个模型能让非常粗糙的简笔画,一键变成逼真3D模型。

还支持实时编辑,不满意的地方擦掉重画,立马生成一个新的
要知道之前的“图转图”模型,基本都是停留在2D层面,这回直接变3D真是一个突破。

也确实是生产力利器。
可从任意角度实时编辑

现在有很多图-图的转换模型,但基本上都是2D-2D。

这是因为从2D到3D,在训练和测试过程中都有很大挑战。

训练方面,想要把2D输入图像和3D输出图像配对,需要庞大数据集,成本会很高。

测试方面,为了得到不同角度的3D模型,需要输入图像的多个视角,但是二者之间可能存在不一致的情况,导致生成效果不好。

为了解决这些问题,朱俊彦团队提出了使用3D神经场景表示(3Dneuralscenerepresentations)的条件生成模型。
它只需要给定一个2D标签图(如语义分割图和勾线图),能为每个3D点匹配标签、颜色和密度等。实现在渲染图像的同时,像素对齐标签图像。
通过构建一个交互式系统,用户能在任何视角修改标签图,并生成与之相对的输出。

为了实现跨视图编辑,需要将额外的语音信息编码为3D的,然后通过图像重建和对抗损失(adversariallosses)的2D监督,来学习上述3D表示。

重建损失可以确保2D用户输入和相应的3D内容对齐,像素对齐条件鉴别器(pixel-alignedconditionaldiscriminator)也进一步促使外观和标签对应合理,并在新视角时也保持像素对齐。

最后,方法还提出了跨视图一致性损失,强制潜码在不同视点保持一致。
不过研究团队也提出了方法的一些局限性。

第一,目前它还只能针对于单个对象;

第二,模型在训练过程中,需要与每个训练图像关联相机姿态(camerapose),推理时不需要。如果能不依赖于相机姿态,可以进一步扩大模型的使用范围。

朱俊彦团队出品

该论文成果来自朱俊彦团队。
回复

使用道具 举报

497

主题

907

帖子

2654

积分

金牌会员

Rank: 6Rank: 6

积分
2654
 楼主| 发表于 2023-2-21 11:10:42 | 显示全部楼层
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|长城汽车产业研究院

GMT+8, 2025-6-19 06:44 , Processed in 0.014818 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表